목록경로분석 (3)
Yours Ever, Data Chronicles

안녕하세요 Everly입니다. 오늘은 [파이썬 데이터 분석 #7장]의 마지막 내용인 '물류 네트워크 설계'에 관해 포스팅해보겠습니다. 우리가 앞서 배웠던 최적화 2가지는 이것이었죠. 운송 경로 최적화(운송 비용 최적화) - 1편 / 2편 생산 계획 최적화 - 포스팅 이렇게 운송 경로 최적화에서는 운송비용을 최소화하는 최적의 경로를 찾았고, 생산계획 최적화에서는 총이익을 최대화할 수 있는 최적의 생산량을 찾았습니다. 하지만 실제 현장에서는 이 2가지 최적화 기법을 따로 하는 게 아니라, 동시에 고려해야 합니다. 즉, 최적의 '물류 네트워크'를 만들어야 한다는 것이죠. 이런 과정을 통해, 우리는 최적의 운송량과 최적의 생산량 두가지를 모두 만족하는 네트워크를 만들어봅니다. python ortoolpy 라이브..

저번 포스팅에 바로 이어서, 파이썬 운송 최적화 부분을 마무리해봅니다. ✔Table of Contents Tech 62. 앞서 구한 최적 운송 경로를 네트워크 시각화하자. 이전에 배웠던 네트워크 시각화를 한번 해봅시다! 공장(F), 창고(W) 좌표정보를 가져와 찍고, 운송경로의 최적해 값(v1)을 엣지의 가중치로 보면, 어떤 운송경로가 두드러지는지를 한 눈에 파악해볼 수 있겠죠? 또한, 이전 6장에서 했던 네트워크와 결과가 어떻게 달라지는지도 확인해 봅시다. (네트워크 시각화가 무엇인지 궁금하다면, 여기에서 확인하세요!) import pandas as pd import numpy as np import matplotlib.pyplot as plt import networkx as nx #데이터 불러오기 ..

이번 포스팅에서는 python networkx 라이브러리를 활용해 네트워크를 가시화하는 방법을 알아보고, 실제 물류 데이터를 적용하여 효율적으로 운송이 이루어지고 있는지를 살펴봅니다. 최적화를 시각화하는 라이브러리는 다양하지만 여기서는 networkx를 사용합니다. ✔Table of Contents Tech 53. 네트워크 가시화하기 (기초) 먼저 네트워크 시각화를 하기 위해선 다음이 필요합니다. 그래프 객체 노드(node) : 점 엣지(edge) : 점과 점을 연결하는 선 좌표 : 점의 좌표 위의 순서를 지켜, 가장 기본적인 네트워크를 만들어보겠습니다. import networkx as nx import matplotlib.pyplot as plt #그래프 객체 설정 G = nx.Graph() #노드 ..